优雅的关闭和清理

列表 21-20 中的代码通过使用线程池异步响应请求,正如我们所期望的那样。我们得到了一些关于 workersidthread 字段的警告,这些字段我们没有直接使用,这提醒我们没有清理任何内容。当我们使用不太优雅的 ctrl-c 方法来停止主线程时,所有其他线程也会立即停止,即使它们正在处理请求。

接下来,我们将实现Drop trait,以便在池中的每个线程上调用join,使它们能够在关闭之前完成正在处理的请求。然后,我们将实现一种方法来通知线程它们应该停止接受新请求并关闭。为了演示这段代码,我们将修改我们的服务器,使其仅接受两个请求后优雅地关闭其线程池。

我们需要注意的一点是:这不会影响处理执行闭包的代码部分,因此即使我们使用线程池为异步运行时,这里的一切也会完全相同。

ThreadPool上实现Drop特性

让我们从在我们的线程池上实现Drop开始。当池被丢弃时,我们的线程应该全部加入以确保它们完成工作。 清单 21-22 显示了Drop实现的第一次尝试;这段代码还不能完全工作。

Filename: src/lib.rs
use std::{
    sync::{mpsc, Arc, Mutex},
    thread,
};

pub struct ThreadPool {
    workers: Vec<Worker>,
    sender: mpsc::Sender<Job>,
}

type Job = Box<dyn FnOnce() + Send + 'static>;

impl ThreadPool {
    /// Create a new ThreadPool.
    ///
    /// The size is the number of threads in the pool.
    ///
    /// # Panics
    ///
    /// The `new` function will panic if the size is zero.
    pub fn new(size: usize) -> ThreadPool {
        assert!(size > 0);

        let (sender, receiver) = mpsc::channel();

        let receiver = Arc::new(Mutex::new(receiver));

        let mut workers = Vec::with_capacity(size);

        for id in 0..size {
            workers.push(Worker::new(id, Arc::clone(&receiver)));
        }

        ThreadPool { workers, sender }
    }

    pub fn execute<F>(&self, f: F)
    where
        F: FnOnce() + Send + 'static,
    {
        let job = Box::new(f);

        self.sender.send(job).unwrap();
    }
}

impl Drop for ThreadPool {
    fn drop(&mut self) {
        for worker in &mut self.workers {
            println!("Shutting down worker {}", worker.id);

            worker.thread.join().unwrap();
        }
    }
}

struct Worker {
    id: usize,
    thread: thread::JoinHandle<()>,
}

impl Worker {
    fn new(id: usize, receiver: Arc<Mutex<mpsc::Receiver<Job>>>) -> Worker {
        let thread = thread::spawn(move || loop {
            let job = receiver.lock().unwrap().recv().unwrap();

            println!("Worker {id} got a job; executing.");

            job();
        });

        Worker { id, thread }
    }
}
Listing 21-22: Joining each thread when the thread pool goes out of scope

首先,我们遍历线程池中的每个 workers。我们使用 &mut,因为 self 是一个可变引用,我们还需要能够修改 worker。对于每个工作线程,我们打印一条消息,说明该工作线程正在关闭,然后调用该工作线程的 join 方法。如果 join 调用失败,我们使用 unwrap 使 Rust 进入非正常关闭状态。

当我们编译这段代码时,会出现以下错误:

$ cargo check
    Checking hello v0.1.0 (file:///projects/hello)
error[E0507]: cannot move out of `worker.thread` which is behind a mutable reference
    --> src/lib.rs:52:13
     |
52   |             worker.thread.join().unwrap();
     |             ^^^^^^^^^^^^^ ------ `worker.thread` moved due to this method call
     |             |
     |             move occurs because `worker.thread` has type `JoinHandle<()>`, which does not implement the `Copy` trait
     |
note: `JoinHandle::<T>::join` takes ownership of the receiver `self`, which moves `worker.thread`
    --> file:///home/.rustup/toolchains/1.82/lib/rustlib/src/rust/library/std/src/thread/mod.rs:1763:17
     |
1763 |     pub fn join(self) -> Result<T> {
     |                 ^^^^

For more information about this error, try `rustc --explain E0507`.
error: could not compile `hello` (lib) due to 1 previous error

错误告诉我们,我们不能调用join,因为我们只有每个worker的可变借用,而join需要拥有其参数。为了解决这个问题,我们需要将线程从拥有threadWorker实例中移出,以便join可以消耗线程。一种方法是采用我们在清单18-15中使用的方法。如果Worker持有一个Option<thread::JoinHandle<()>>,我们可以在Option上调用take方法,将值从Some变体中移出,并在其位置留下一个None变体。换句话说,正在运行的Workerthread中将有一个Some变体,而当我们想要清理一个Worker时,我们会将Some替换为None,这样Worker就没有线程可以运行。

然而,这只有在丢弃Worker时才会出现。作为交换,每次访问worker.thread时,我们都必须处理一个Option<thread::JoinHandle<()>>。惯用的Rust代码大量使用Option,但当你发现自己即使知道某个项总是存在,也为了绕过问题而将其包装在Option中时,最好寻找替代方法。这些方法可以使你的代码更简洁,减少错误。

在这种情况下,有一个更好的选择:Vec::drain 方法。它接受一个范围参数来指定要从 Vec 中移除的项,并返回这些项的迭代器。传递 .. 范围语法将移除 Vec 中的 每个 值。

所以我们需要更新 ThreadPooldrop 实现如下:

Filename: src/lib.rs
#![allow(unused)]
fn main() {
use std::{
    sync::{mpsc, Arc, Mutex},
    thread,
};

pub struct ThreadPool {
    workers: Vec<Worker>,
    sender: mpsc::Sender<Job>,
}

type Job = Box<dyn FnOnce() + Send + 'static>;

impl ThreadPool {
    /// Create a new ThreadPool.
    ///
    /// The size is the number of threads in the pool.
    ///
    /// # Panics
    ///
    /// The `new` function will panic if the size is zero.
    pub fn new(size: usize) -> ThreadPool {
        assert!(size > 0);

        let (sender, receiver) = mpsc::channel();

        let receiver = Arc::new(Mutex::new(receiver));

        let mut workers = Vec::with_capacity(size);

        for id in 0..size {
            workers.push(Worker::new(id, Arc::clone(&receiver)));
        }

        ThreadPool { workers, sender }
    }

    pub fn execute<F>(&self, f: F)
    where
        F: FnOnce() + Send + 'static,
    {
        let job = Box::new(f);

        self.sender.send(job).unwrap();
    }
}

impl Drop for ThreadPool {
    fn drop(&mut self) {
        for worker in self.workers.drain(..) {
            println!("Shutting down worker {}", worker.id);

            worker.thread.join().unwrap();
        }
    }
}

struct Worker {
    id: usize,
    thread: thread::JoinHandle<()>,
}

impl Worker {
    fn new(id: usize, receiver: Arc<Mutex<mpsc::Receiver<Job>>>) -> Worker {
        let thread = thread::spawn(move || loop {
            let job = receiver.lock().unwrap().recv().unwrap();

            println!("Worker {id} got a job; executing.");

            job();
        });

        Worker { id, thread }
    }
}
}

这解决了编译器错误,并且不需要对我们的代码进行任何其他更改。

向线程发出停止监听任务的信号

随着我们所做的所有更改,我们的代码编译时没有任何警告。 然而,坏消息是这段代码还没有按我们希望的方式工作。 关键在于由Worker实例的线程运行的闭包中的逻辑:目前,我们调用join,但这不会关闭线程 因为它们会无限循环地寻找任务。如果我们尝试使用当前实现的drop来删除我们的ThreadPool,主线程将 永远阻塞等待第一个线程完成。

为了解决这个问题,我们需要更改 ThreadPooldrop 实现,然后更改 Worker 循环。

首先,我们将更改 ThreadPooldrop 实现,以在等待线程完成之前显式地释放 sender。列表 21-23 显示了对 ThreadPool 的更改,以显式地释放 sender。与 workers 不同,这里我们 确实 需要使用 Option,以便能够使用 Option::takesenderThreadPool 中移出。

Filename: src/lib.rs
use std::{
    sync::{mpsc, Arc, Mutex},
    thread,
};

pub struct ThreadPool {
    workers: Vec<Worker>,
    sender: Option<mpsc::Sender<Job>>,
}
// --snip--

type Job = Box<dyn FnOnce() + Send + 'static>;

impl ThreadPool {
    /// Create a new ThreadPool.
    ///
    /// The size is the number of threads in the pool.
    ///
    /// # Panics
    ///
    /// The `new` function will panic if the size is zero.
    pub fn new(size: usize) -> ThreadPool {
        // --snip--

        assert!(size > 0);

        let (sender, receiver) = mpsc::channel();

        let receiver = Arc::new(Mutex::new(receiver));

        let mut workers = Vec::with_capacity(size);

        for id in 0..size {
            workers.push(Worker::new(id, Arc::clone(&receiver)));
        }

        ThreadPool {
            workers,
            sender: Some(sender),
        }
    }

    pub fn execute<F>(&self, f: F)
    where
        F: FnOnce() + Send + 'static,
    {
        let job = Box::new(f);

        self.sender.as_ref().unwrap().send(job).unwrap();
    }
}

impl Drop for ThreadPool {
    fn drop(&mut self) {
        drop(self.sender.take());

        for worker in self.workers.drain(..) {
            println!("Shutting down worker {}", worker.id);

            worker.thread.join().unwrap();
        }
    }
}

struct Worker {
    id: usize,
    thread: thread::JoinHandle<()>,
}

impl Worker {
    fn new(id: usize, receiver: Arc<Mutex<mpsc::Receiver<Job>>>) -> Worker {
        let thread = thread::spawn(move || loop {
            let job = receiver.lock().unwrap().recv().unwrap();

            println!("Worker {id} got a job; executing.");

            job();
        });

        Worker { id, thread }
    }
}
Listing 21-23: Explicitly drop sender before joining the worker threads

释放 sender 会关闭通道,这表示不会再发送更多消息。当这种情况发生时,工作线程在无限循环中对 recv 的所有调用都将返回错误。在示例 21-24 中,我们更改了 Worker 循环,使其在这种情况下优雅地退出循环,这意味着当 ThreadPooldrop 实现调用 join 时,线程将结束。

Filename: src/lib.rs
use std::{
    sync::{mpsc, Arc, Mutex},
    thread,
};

pub struct ThreadPool {
    workers: Vec<Worker>,
    sender: Option<mpsc::Sender<Job>>,
}

type Job = Box<dyn FnOnce() + Send + 'static>;

impl ThreadPool {
    /// Create a new ThreadPool.
    ///
    /// The size is the number of threads in the pool.
    ///
    /// # Panics
    ///
    /// The `new` function will panic if the size is zero.
    pub fn new(size: usize) -> ThreadPool {
        assert!(size > 0);

        let (sender, receiver) = mpsc::channel();

        let receiver = Arc::new(Mutex::new(receiver));

        let mut workers = Vec::with_capacity(size);

        for id in 0..size {
            workers.push(Worker::new(id, Arc::clone(&receiver)));
        }

        ThreadPool {
            workers,
            sender: Some(sender),
        }
    }

    pub fn execute<F>(&self, f: F)
    where
        F: FnOnce() + Send + 'static,
    {
        let job = Box::new(f);

        self.sender.as_ref().unwrap().send(job).unwrap();
    }
}

impl Drop for ThreadPool {
    fn drop(&mut self) {
        drop(self.sender.take());

        for worker in self.workers.drain(..) {
            println!("Shutting down worker {}", worker.id);

            worker.thread.join().unwrap();
        }
    }
}

struct Worker {
    id: usize,
    thread: thread::JoinHandle<()>,
}

impl Worker {
    fn new(id: usize, receiver: Arc<Mutex<mpsc::Receiver<Job>>>) -> Worker {
        let thread = thread::spawn(move || loop {
            let message = receiver.lock().unwrap().recv();

            match message {
                Ok(job) => {
                    println!("Worker {id} got a job; executing.");

                    job();
                }
                Err(_) => {
                    println!("Worker {id} disconnected; shutting down.");
                    break;
                }
            }
        });

        Worker { id, thread }
    }
}
Listing 21-24: Explicitly break out of the loop when recv returns an error

要查看此代码的运行情况,让我们修改 main 以仅接受两个请求,然后优雅地关闭服务器,如示例 21-25 所示。

Filename: src/main.rs
use hello::ThreadPool;
use std::{
    fs,
    io::{prelude::*, BufReader},
    net::{TcpListener, TcpStream},
    thread,
    time::Duration,
};

fn main() {
    let listener = TcpListener::bind("127.0.0.1:7878").unwrap();
    let pool = ThreadPool::new(4);

    for stream in listener.incoming().take(2) {
        let stream = stream.unwrap();

        pool.execute(|| {
            handle_connection(stream);
        });
    }

    println!("Shutting down.");
}

fn handle_connection(mut stream: TcpStream) {
    let buf_reader = BufReader::new(&stream);
    let request_line = buf_reader.lines().next().unwrap().unwrap();

    let (status_line, filename) = match &request_line[..] {
        "GET / HTTP/1.1" => ("HTTP/1.1 200 OK", "hello.html"),
        "GET /sleep HTTP/1.1" => {
            thread::sleep(Duration::from_secs(5));
            ("HTTP/1.1 200 OK", "hello.html")
        }
        _ => ("HTTP/1.1 404 NOT FOUND", "404.html"),
    };

    let contents = fs::read_to_string(filename).unwrap();
    let length = contents.len();

    let response =
        format!("{status_line}\r\nContent-Length: {length}\r\n\r\n{contents}");

    stream.write_all(response.as_bytes()).unwrap();
}
Listing 21-25: Shut down the server after serving two requests by exiting the loop

你不会希望一个现实世界的Web服务器在仅服务了两个请求后就关闭。这段代码只是证明了优雅的关闭和清理机制是有效的。

take 方法在 Iterator 特性中定义,将迭代限制为最多前两个项目。ThreadPool 将在 main 结束时超出作用域,drop 实现将运行。

使用 cargo run 启动服务器,并发出三个请求。第三个请求应该出错,并且在您的终端中应看到类似的输出:

$ cargo run
   Compiling hello v0.1.0 (file:///projects/hello)
    Finished `dev` profile [unoptimized + debuginfo] target(s) in 0.41s
     Running `target/debug/hello`
Worker 0 got a job; executing.
Shutting down.
Shutting down worker 0
Worker 3 got a job; executing.
Worker 1 disconnected; shutting down.
Worker 2 disconnected; shutting down.
Worker 3 disconnected; shutting down.
Worker 0 disconnected; shutting down.
Shutting down worker 1
Shutting down worker 2
Shutting down worker 3

你可能会看到不同的工作线程和消息打印顺序。我们可以通过这些消息了解代码的工作原理:工作线程 0 和 3 获取了前两个请求。服务器在第二个连接后停止接受连接,而 ThreadPool 上的 Drop 实现甚至在工作线程 3 开始其任务之前就开始执行。释放 sender 会断开所有工作线程的连接并告诉它们关闭。每个工作线程在断开连接时都会打印一条消息,然后线程池调用 join 等待每个工作线程完成。

注意这个特定执行的一个有趣方面:ThreadPool 丢弃了 sender,并且在任何工作线程收到错误之前,我们尝试加入工作线程 0。工作线程 0 尚未从 recv 收到错误,因此主线程阻塞等待工作线程 0 完成。在此期间,工作线程 3 收到了一个任务,然后所有线程都收到了错误。当工作线程 0 完成时,主线程等待其余工作线程完成。那时,它们都已经退出了循环并停止。

恭喜!我们现在完成了项目;我们有一个使用线程池异步响应的基本Web服务器。我们能够执行服务器的优雅关闭,清理池中的所有线程。

以下是完整的代码供参考:

Filename: src/main.rs
use hello::ThreadPool;
use std::{
    fs,
    io::{prelude::*, BufReader},
    net::{TcpListener, TcpStream},
    thread,
    time::Duration,
};

fn main() {
    let listener = TcpListener::bind("127.0.0.1:7878").unwrap();
    let pool = ThreadPool::new(4);

    for stream in listener.incoming().take(2) {
        let stream = stream.unwrap();

        pool.execute(|| {
            handle_connection(stream);
        });
    }

    println!("Shutting down.");
}

fn handle_connection(mut stream: TcpStream) {
    let buf_reader = BufReader::new(&stream);
    let request_line = buf_reader.lines().next().unwrap().unwrap();

    let (status_line, filename) = match &request_line[..] {
        "GET / HTTP/1.1" => ("HTTP/1.1 200 OK", "hello.html"),
        "GET /sleep HTTP/1.1" => {
            thread::sleep(Duration::from_secs(5));
            ("HTTP/1.1 200 OK", "hello.html")
        }
        _ => ("HTTP/1.1 404 NOT FOUND", "404.html"),
    };

    let contents = fs::read_to_string(filename).unwrap();
    let length = contents.len();

    let response =
        format!("{status_line}\r\nContent-Length: {length}\r\n\r\n{contents}");

    stream.write_all(response.as_bytes()).unwrap();
}
Filename: src/lib.rs
use std::{
    sync::{mpsc, Arc, Mutex},
    thread,
};

pub struct ThreadPool {
    workers: Vec<Worker>,
    sender: Option<mpsc::Sender<Job>>,
}

type Job = Box<dyn FnOnce() + Send + 'static>;

impl ThreadPool {
    /// Create a new ThreadPool.
    ///
    /// The size is the number of threads in the pool.
    ///
    /// # Panics
    ///
    /// The `new` function will panic if the size is zero.
    pub fn new(size: usize) -> ThreadPool {
        assert!(size > 0);

        let (sender, receiver) = mpsc::channel();

        let receiver = Arc::new(Mutex::new(receiver));

        let mut workers = Vec::with_capacity(size);

        for id in 0..size {
            workers.push(Worker::new(id, Arc::clone(&receiver)));
        }

        ThreadPool {
            workers,
            sender: Some(sender),
        }
    }

    pub fn execute<F>(&self, f: F)
    where
        F: FnOnce() + Send + 'static,
    {
        let job = Box::new(f);

        self.sender.as_ref().unwrap().send(job).unwrap();
    }
}

impl Drop for ThreadPool {
    fn drop(&mut self) {
        drop(self.sender.take());

        for worker in &mut self.workers {
            println!("Shutting down worker {}", worker.id);

            if let Some(thread) = worker.thread.take() {
                thread.join().unwrap();
            }
        }
    }
}

struct Worker {
    id: usize,
    thread: Option<thread::JoinHandle<()>>,
}

impl Worker {
    fn new(id: usize, receiver: Arc<Mutex<mpsc::Receiver<Job>>>) -> Worker {
        let thread = thread::spawn(move || loop {
            let message = receiver.lock().unwrap().recv();

            match message {
                Ok(job) => {
                    println!("Worker {id} got a job; executing.");

                    job();
                }
                Err(_) => {
                    println!("Worker {id} disconnected; shutting down.");
                    break;
                }
            }
        });

        Worker {
            id,
            thread: Some(thread),
        }
    }
}

我们还可以做得更多!如果您想继续增强这个项目,这里有一些想法:

  • ThreadPool 及其公共方法添加更多文档。
  • 添加测试以检验库的功能。
  • unwrap 的调用更改为更健壮的错误处理。
  • 使用 ThreadPool 执行除处理网页请求之外的某些任务。
  • crates.io上找到一个线程池库,并使用该库实现一个类似的Web服务器。然后将其API和健壮性与我们实现的线程池进行比较。

摘要

干得好!你已经到达了这本书的结尾!我们要感谢你加入我们这次的Rust之旅。你现在可以开始实现自己的Rust项目,并帮助其他人的项目。请记住,有一个欢迎的Rustaceans社区,他们很乐意在你的Rust之旅中遇到的任何挑战时帮助你。